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Two Methods for the Determination of Enantiomeric Excess and
Concentration of a Chiral Sample with a Single Spectroscopic Measurement
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Introduction

Library screening approaches for the development of asym-
metric catalysts are becoming standard protocols in both in-
dustry and academia[1,2] for rapid quantification of yield and
enantiomeric excess (ee) of chiral products in a high-
throughput fashion.[3,4] Currently, parallel chromatographic
methods are mostly employed for that purpose.[5–9] The de-
velopment of optical spectroscopic assays (e.g. absorption or
fluorescence) should ease the instrumentation dependence
and increase the speed of high-throughput assays.[1,10]

We introduced the use of enantioselective indicator-dis-
placement assays (eIDAs) to determine both concentration

and ee of chiral samples.[11–13] Few other methods have been
shown to have this capacity.[14–17] In an eIDA, two spectro-
scopic measurements are taken. First, the concentration of a
chiral sample ([G]t) is determined with an indicator-dis-
placement assay (IDA)[18] using an achiral host (H,
Scheme 1). Second, an eIDA is carried out where a chiral
host (H*) is used to generate a [G]t- and ee-dependent opti-
cal signal (DAbs or F/FI). Such a signal is related to [G]t and
ee by way of a mathematical function of solution equilibri-
um constants and molar absorptivities ([Equation (2)],
Scheme 1).[11] Because [G]t is known from the measurement
using the achiral host H, the ee of the sample can be ob-
tained by solving Equation (2). We have used an arylboronic
acid based eIDA to quantitatively analyze chiral a-hydroxy-
carboxylates and diols.[11, 12] The accuracies for both concen-
tration and ee are well within the requirement for a typical
asymmetric catalysis screening project.
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The requirement for applying two spectroscopic measure-
ments for analyzing one chiral sample prompted us to engi-
neer the eIDA system further to eliminate the need for sep-
arate measurements for concentration and ee. We now
report two critical improvements. The first is a reduction of
the number of measurements from two to one by using a
dual-chamber quartz cuvette (Figure 1 A).[19] A single ab-
sorption spectrum of the dual-chamber cuvette represents a
combined optical response from each individual chamber

caused by the addition of a chiral sample. The absorption
data can be collected at the isosbestic points or alternate
transparent region of the individual chambers, thus reflect-
ing optical changes that take place in the other chamber.
The consequence here is that two independent equations
can be established by using data collected from a single
spectroscopic measurement to determine the values of two
independent variables (concentration and ee) in these two
equations. In an extension of our mathematical procedure
mentioned above, we describe a judicious choice of indica-
tor/host combinations that takes advantage of this feature to
generate both concentration- and ee-dependent calibration
curves. Our second improvement uses the same dual-cham-
ber cuvette to collect absorption data. However, we remove
the requirement to measure equilibrium constants and
molar absorptivities altogether by the use of an artificial
neural network (ANN), for which the data collection is not
limited to just isosbestic points and transparent regions. We
demonstrate both approaches using the previously reported
boronic acid receptors 1 and (S,S)-2 (Figure 1).[11] The work
reported here represents a significant advancement in the
accuracy and more importantly, the speed of our eIDAs
methodologies.

Results and Discussion

In the first approach, appropriate indicator/host combina-
tions are added in respective chambers of the cuvette so

Scheme 1. Two-step enantioselective indicator-displacement assays
(eIDAs). H: achiral host; H*: chiral host; I: indicator; G, GR, GS : guest;
DAbs: absorbance change; F : fluorescence intensity; FI : fluorescence in-
tensity of an unbound indicator, a constant; [G]t: guest concentration; ee :
enantiomeric excess. KHI, KHG, KH*I, KH*GR, and KH*GS are affinity con-
stants between host (H, H*) and substrates (I, G, GR, GS), respectively.
Equation (1) is an empirical polynomial fit for an A versus [G]t displace-
ment curve. Equation (2) is a theoretical function derived from solution
multi-equilibria and BeerJs Law analysis, shown here: {A�eIb[I]t/b-
ACHTUNGTRENNUNG(eH*I�eI)} + {eIb[I]t�A/KH*I ACHTUNGTRENNUNG(A�eH*Ib[I]t)} + {KH*GR[G]tACHTUNGTRENNUNG(1+ee)-
ACHTUNGTRENNUNG(eIb[I]t�A)/2[A(KH*I�KH*GR)�b[I]t(eH*IKH*I�eIKH*GR)]} + {KH*GS[G]t-
ACHTUNGTRENNUNG(1�ee) ACHTUNGTRENNUNG(eIb[I]t�A)/2[A(KH*I�KH*GS)�b[I]t(eH*IKH*I�eIKH*GS)]}= [H]t.

Figure 1. A) A dual-chamber quartz cuvette containing indicators ML (left) and AC (right). B) Overlay of two indicator–host isotherms. Blue: absorp-
tion spectra of ML (92.0 mm) in 75% methanolic aqueous solution buffered with 10 mm HEPES at pH 7.4 (default buffer) in the presence of (0–0.44 mm)
of 1; Red: absorption spectra of AC (115 mm) in the default buffer in the presence of (0–0.26 mm) of (S,S)-2. C) Absorption spectra of ML (198 mm), 1
(0.559 mm), AC (285 mm), and (S,S)-2 (0.765 mm) in their designated chambers in the default buffer in the presence of PL (6.0 mm) with ee of d-PL vary-
ing from �1 to 1. D) Two independent equations that correlate the absorbance (A) to [G]t and ee at wavelengths l1 (387 nm) and l2 (536 nm).
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that two independent equations regarding [G]t and ee can
be established simultaneously with a single absorption mea-
surement. The left chamber of the cuvette contained the
achiral host 1 (H) and the colorless indicator 4-methylescu-
letin (ML); while the right chamber contained the chiral
host (S,S)-2 (H*) with the colorimetric indicator alizarin
complexone (AC, Figure 1). Absorption modulations occur
when the catechol-based ML and AC reversibly interact
with boronic acid host 1 and (S,S)-2. The addition of the
chiral a-hydroxycarboxylate phenyllactate (PL) enantiose-
lectively alters the ratio of free and chiral host-bound indi-
cators ([I] and [H*I]), hence also the absorbance.

A particularly attractive feature of this cuvette is that ab-
sorption data can be collected at the isosbestic points, or
transparent regions, of the spectra recorded in each individ-
ual chamber, thereby only reflecting optical changes that
occur in the other chamber. The absorption spectra of ML/1
(blue) and AC/ ACHTUNGTRENNUNG(S,S)-2 (red) titration experiments are over-
laid in Figure 1 B. The isosbestic point of AC at 387 nm (l1)
overlaps with a receptor-responsive region of ML that has a
large dynamic range. At 387 nm, the absorbance from the
right chamber (AR) is independent of both host ([H*]) and
guest ([G]t) concentrations, whereas the absorbance from
the left chamber is only dependent on the guest concentra-
tion ([G]t) because the residing host in the left chamber (1)
is achiral. By combining the absorbance from both chambers
at this wavelength, Equation (3) is established (Figure 1 D).
In contrast, at 536 nm (l2) where the indicator ML is trans-
parent, the absorbance change is solely due to the chemical
events taking place in the right chamber. The absorbance is
dependent on both [G]t and ee because the right chamber is
occupied by the chiral host (S,S)-2 [Eq. (2)]. Putting these
two equations together, the values of [G]t and ee can be
solved. The overall spectroscopic modulation with the ee of
PL ranging from �1 to 1, where the concentration of PL is
fixed at 6.0 mm, is plotted in Figure 1 C.

The parameters required for Equations (2) and (3) (AR,
KH*I, eI, eH*I, KH*GR, KH*GS, [I]t,
[H*]t, I=AC) are determined
independently prior to the
actual analysis. In short, the
equilibrium constants and
molar absorptivities (KH*I, eI,
eH*I, KH*GR, KH*GS) were deter-
mined by UV/Vis titrations in
the dual-chamber cuvette (b=
0.5 cm, while the other chamber
was filled with buffer blank in
these parameter-determination
experiments) using entiomeri-
cally pure PL samples (for ex-
perimental procedures see ref-
erence [11]). AR was also deter-
mined from the above-men-
tioned titrations by averaging
the absorption values at 387 nm
when AC was used as the indi-

cator at (284.5 mm). The total concentration values ([I]t,
[H*]t) were determined gravimetrically.

A calibration curve for [G]t determination was generated
as the following: A displacement isotherm at 387 nm was af-
forded by titrating PL (either enantiomer, 0–6.55 mm) into a
solution of the achiral host 1 (0.307 mm) and indicator ML
(202 mm) in the left chamber of the cuvette (the right cham-
ber was filled with buffer). The isotherm was raised by
adding AR [Eq. (3)]. As described before, AR is the absorb-
ance at the isosbestic point (387 nm) of AC at the concen-
tration of AC used in the right chamber (284.5 mm), which
was determined to be 0.31. The empirical polynomial curve
fitting afforded the A387 versus [G]t relationship Equa-
tion (3) as y=8 P 10�6 x6�0.0002x5 + 0.0028x4�0.0181x3 +

0.0727x2�0.2043x + 1.0318 (y=A, x= [G]t). The high-order
(6th) of the polynomial curve fitting allowed us to gain the
maximum regression coefficient (R2=1). This equation was
subsequently used as a calibration equation for the accurate
determination of [G]t (Figure 2 B).

Three ee titration experiments were performed in the
dual-chamber cuvette by using the 2-indicator-2-host
system.[19] For each set of data, the concentration of PL
([G]t) was fixed and the ee of d-PL was varied from �1 to 1.
The actual titration spectra are similar to the ones shown in
Figure 1 C. The absorbance at 387 nm versus ee values for
all three sets of spectra is shown in Figure 2 A. As expected,
the absorbance at 387 nm is independent of ee values. How-
ever, it differs with respect to total concentration [G]t (Fig-
ure 2 A). The average absorbance values for each [G]t value
are overlaid with the calibration curve at 387 nm (Fig-
ure 2 B). The predictive power of the calibration curves is
evident. The concentrations [G]t of 11 designated unknown
PL samples (the “unknown” samples were randomly chosen
from the three titration experiments). These 11 data points
were not included in the three calibration curves in Figure 3,
but instead were determined by solving Equation (3) using

Figure 2. A) Absorbance change at 387 nm of ML (202 mm), 1 (307 mm), AC (284.5 mm), and (S,S)-2 (400 mm),
in their designated chambers in the default buffer, upon increasing ee of d-PL. ^: [G]t=0.98 mm. &: [G]t=

1.47 mm. ~: [G]t=1.96 mm. B) ^: the absorbance change at 387 nm of the dual-chamber ensemble in Fig-
ure 2 A upon increasing concentration of l-PL (d-PL produced an identical curve, not shown). The average ab-
sorbance from the ee titrations (coding scheme as in Figure 2 A) at three different [G]t values are overlaid on
the calibration curve.
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the software Mathematica 5.1.[20] The average absolute
errors were limited to an average of �3.3 % (Table 1).

The absorbance at 536 nm, where the bound indicator
(H*I) absorbs, with regard to ee values at three different
[G]t values are plotted in Figure 3. At a fixed [G]t value, the
absorbance decreases (which indicates that the amount of
free indicator AC is reduced) with increasing ee of d-PL,
the enantiomer with lesser affinity. When the [G]t found
from the measurement in the first chamber is used in Equa-
tion (2), only a function of ee is obtained. Calculated A
versus ee curves were generated for the three [G]t values as
shown in Figure 2. The overlay of the theoretical predictions
with the experimental ee data for all three [G]t cases is
shown in Figure 3.[21] Equation (2) was then used to deter-
mine the ee of the 11 unknown PL samples, where their con-
centrations ([G]t) were determined by Equation (3). The
average absolute error of the ee determination was �7.9 %
(Table 1).[22] Hence, the determination of both [G]t and ee of
chiral samples using single spectroscopic measurements is
possible using a dual-chamber cuvette.

The second approach relies on an analysis using artificial
neural networks (ANNs). An ANN is an information pro-

cessing paradigm that simulates the way biological nervous
systems, in particular the brain, process information. The
computer programs that implement the ANN paradigm are
able to solve problems by learning from analogous existing
examples. The theoretical foundation and the applications
of ANNs in chemistry, mainly in the pattern recognition
area, have been extensively reviewed.[23,24]

The chiral analysis problem in this study can be solved
with an ANN program. The general procedure included
three steps. First, the absorbance data obtained with known
[G]t and ee values are fed into the program. A network is
subsequently generated that accurately models the unknown
underlying function that relates the input variables to the
output variables. Second, a successful training session estab-
lishes a hidden function in the form of {[G]t, ee}=F(Al1, Al2,
Al3, etc.) within the network. Third, absorbance data from
test samples are input into the network. After the new data
are processed by the hidden function, the network will gen-
erate outputs, which in this case are the values of [G]t and
ee.

As a simple demonstration, the absorbance at 387 nm and
536 nm (A387, A536) from the three ee titrations and corre-
sponding [G]t and %R (the percentage of R(d)-PL in the
sample)[25] values, excluding the 11 data points in Table 1,
were used as training sets. A387 and A536 were considered as
inputs, and [G]t and %R were outputs. Thus, a total of 65
cases were imported into the Statistica Neural Networks 4.0
program,[26] 10 of these cases were randomly selected by the
program for the cross-verification of the networks that are
generated. In principle, a large number of networks are
tested and the one with the best cross-verification error is
selected. The Statistica Neural Networks program has an
embedded intelligent problem solver (IPS) function, which
is used to automatically create a network set that contains
neural networks suitable for the designated problem. From
the network set, a multilayer perceptron (MLP) with two
inputs was selected based upon both its performance rating
and our experience with the MLP type of neural networks
(Figure 4 A).[27,28] The selected MLP was subsequently
trained with the back-propagation algorithm. Thereafter, the

Figure 3. &: absorbance changes at 536 nm of the dual-chamber ensemble upon increasing ee of d-PL. A) [G]t=0.98 mm ; B) [G]t=1.47 mm ; C) [G]t=

1.96 mm. ~: data calculated from Equation (2) by the computer program Mathematica 5.1.[21]

Table 1. Determination of concentration and ee of PL samples. IA: de-
termined by isosbestic point analysis; ANN: determined by artificial
neural network. %R : the percentage of R (d-PL) in the samples.

No. [G]t [mm]

ACHTUNGTRENNUNG(actual)
[G]t [mm]

(IA)
[G]t [mm]

ACHTUNGTRENNUNG(ANN)
ee/%R
ACHTUNGTRENNUNG(actual)

ee
(IA)

%R
ACHTUNGTRENNUNG(ANN)

1 0.98 1.06 0.98 �0.90/5 �0.42 4
2 0.98 1.03 0.98 �0.49/25 �0.22 24
3 0.98 0.97 0.99 0.00/50 0.03 48
4 0.98 1.00 0.98 0.90/95 1.00 94
5 1.47 1.54 1.47 �1.00/0.00 �0.82 �2
6 1.47 1.46 1.47 �0.30/35 �0.31 35
7 1.47 1.50 1.47 0.49/75 0.46 75
8 1.96 2.06 1.96 �0.69/15 �0.61 14
9 1.96 1.92 1.93 �0.10/45 �0.21 43
10 1.96 1.98 1.96 0.69/85 0.62 84
11 1.96 1.96 1.95 0.10/55 0.00 54
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learning process of the MLP network was completed and a
hidden function with predictive power specifically tailored
for our problem was established.

For unknown sample analysis, the trained network was
switched to run “one-off” cases. The “one-off” case is a
function of the ANN program that takes a new input to gen-
erate an output by the trained network. Two absorbance
values, A387 and A536, of the designated 11 unknown data
were fed to the network to generate the output [G]t and
%R. The predicted [G]t and %R values for the 11 unknown
samples are shown in Table 1 with average absolute errors
of �0.45 % and �1.1 %, respectively. However, strictly
speaking, these unknown values are not technically un-
known because they were obtained in the same set of titra-
tion experiments from which the training sets of data were
generated. The trained MLP network should be able to pre-
dict [G]t and ee from independently prepared and measured
samples, which would be true unknowns.

Thus, to test the capability of the ANN-based model to
respond to true unknown samples, we examined samples
never used in network development. A new MLP network
was generated with only two ee training sets at two different
[G]t values (0.98 mm and 1.96 mm). In this analysis, one inde-
pendently determined ee data set with [G]t at 1.47 mm was
used to represent unknown samples. The new network was
constructed with absorbance values at 43 wavelengths, in-
stead of two, as inputs in order to enhance the quality of the
trained network. Again, a network set was successfully gen-
erated by IPS, consisting of 34 training sets and seven vali-
dation sets. The network with the best performance (struc-
ture in Figure 4 B) was trained with a back-propagation al-
gorithm. The [G]t and %R of five samples from the data set
with actual [G]t at 1.47 mm were predicted by the trained

network within 11.4 % and 4.2 % average absolute errors, re-
spectively, of the actual values (Table 2). Considering that
the testing samples were prepared and data were collected

under entirely independent conditions from those of the
training set data, it is amazing that the ANN gained such
predicting ability through learning. The relatively low accu-
racy in [G]t determination (determined average at 1.58 mm

versus the actual value of 1.47 mm) should be attributed to
the lack of [G]t variations in the training set data. The accu-
racy will certainly increase should a larger body of training
set data be used. Admittedly, the ANN study reported
herein is a proof-of-principle demonstration of the promise
as well as the limitation of analytical protocols based on
ANNs. In a practical implementation, more data than used
in this study would be needed to train the networks.

The advantages of ANNs over the traditional spectroscop-
ic approach based upon the analysis of solution thermody-
namics and BeerJs Law in determining concentration and
%R (or ee) of a chiral sample are obvious. What is required
for implementing an ANN analysis is simply a large body of
existing data (training sets) that represent the behavior of
the system of interest (the spectroscopic modulation with
regard to [G]t and %R), and a computer program (Statistica
Neural Networks) that can model and predict behavior of
the system that is not included in the existing data. Thus,
the laborious determination of thermodynamic and optical
parameters is not needed, and the indicator choice and
wavelengths for analysis are not as restricted as in the isos-
bestic analysis. Furthermore, the ANN approach described
in this study can be extended to other mixture analysis ame-
nable to indicator-displacement assays. However, one draw-
back of ANN analysis is that a large body of existing data
has to be available. ANNs are at their best when they are
trained with rich information for the system under study.

Conclusion

In summary, we have developed two different approaches
for the determination of concentration [G]t and ee of a
chiral sample with a single spectroscopic measurement. The
analysis of PL samples by eIDAs based on a chiral boronic
acid host was used to demonstrate the described methods.
The experimental setup for both methods relies on a cuvette
with two separate chambers. In practice, two independent
IDAs, one of which used a chiral host, were carried out si-
multaneously with the addition of identical guest samples in
both chambers. In the first approach, an isosbestic analysis

Figure 4. Structures of two MLP networks in this study. Both have three
layers: A) the input layer on the left has two variables—A387 and A536.
The input layer is connected to, and processed by a hidden layer in the
middle with six nodes. Two variables, [G]t and %R, are generated to the
output layer on the right; B) the input layer has 43 variables from A392 to
A602 at 5-nm intervals. The hidden layer has 11 nodes.

Table 2. Determination of concentration and %R of PL samples with a
trained MLP network (Figure 4B). [G]t (actual)=1.47 mm.

%R (actual) 20 45 75 50 100

%R (determined) 27 50 79 52 103
[G]t [mm] (determined) 1.62 1.58 1.58 1.57 1.57
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led to the establishment of two independent equations for
solving two desired variables [G]t and ee. In the second ap-
proach, an artificial neural network (ANN) analysis was
used for determining [G]t and %R. Both approaches ach-
ieved satisfactory accuracy. The implementation of either
approach will be determined by particular applications and/
or practitionerJs preferences. Both approaches are naturally
extendable to high-throughput formats, potentially by using
designer multi-well absorbance plate readers that simulate
double-chamber cuvettes.

Experimental Section

Typical procedure for double-chamber cuvette ee titration : Four ensem-
ble solutions (A–D) were prepared. Their respective compositions are:
solution A: ML (202 mm), 1 (307 mm), d-PL (0.982 mm); solution B: ML
(202 mm), 1 (307 mm), l-PL (0.982 mm); solution C: AC (284 mm), (S,S)-2
(400 mm), d-PL (0.982 mm); solution D: AC (284 mm), (S,S)-2 (400 mm), l-
PL (0.982 mm). Solutions B and D (500 mL each) were added into the left
and right chambers of the cuvette, respectively. Solutions A and C were
incrementally titrated into the left and right chambers, respectively, until
500 mL each of A and C were added, where the ee of PL reached 0 in
both chambers. The absorption spectrum was recorded three minutes
after each addition to allow the system to reach equilibrium. The titration
was repeated with solutions B and D adding into solutions A and C in
their respective chambers to complete the ee range from �1 to 1.

ANN training procedure : Among 65 data in the training set, 55 were des-
ignated as training data by the Statistica program, the remaining 10 data
were designated as verification data. The IPS was requested to search for
MLP networks with three layers, input, hidden, and output, respectively.
One search sequence was designed to last for two minutes, during which
the number of units in the hidden layer was varied until the best network
was found. The found network, which has six hidden layer units, was
trained with a back-propagation algorithm until the errors of training and
verification data converged at ~1%.
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